

SUN COUPLED INNOVATIVE HEAT PUMP

SunHorizon Project Coordinator Technical Project Manager & Business Developer

PROJECT SCOPE AND VISION

Introduction

Context

help reducing technical and market barriers by providing robust data to evaluate performance in market segment

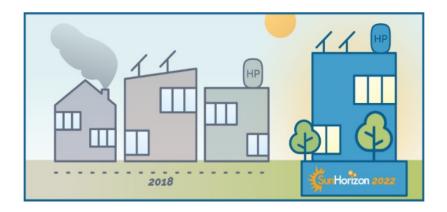
Goals

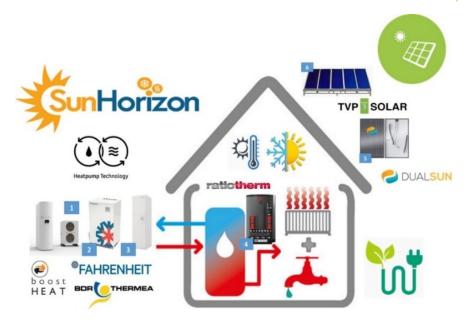
Reducing system costs and improving performance

Approach

To demonstrate coupling of heat pumps and solar technologies in 8 different sites around EU

This Project has received funding fr


Team


21 partners

(U)

SunHorizon goal

TRL 7 – Sun and HP as baseload of EU H&C systems 6 Technologies to be integrated – 5 Technology Packages – 8 Demos 3 Research Pillars based on Functional Monitoring Data exploitation

DESIGN – MANUFACTURE - CONTROL



PROJECT TIMELINE AND RESULTS TO DATE

Relevant Results

January 2020 (M15)

September 2021 (M36)

April 2022 (M43)

Technology specification

Technologies delivered

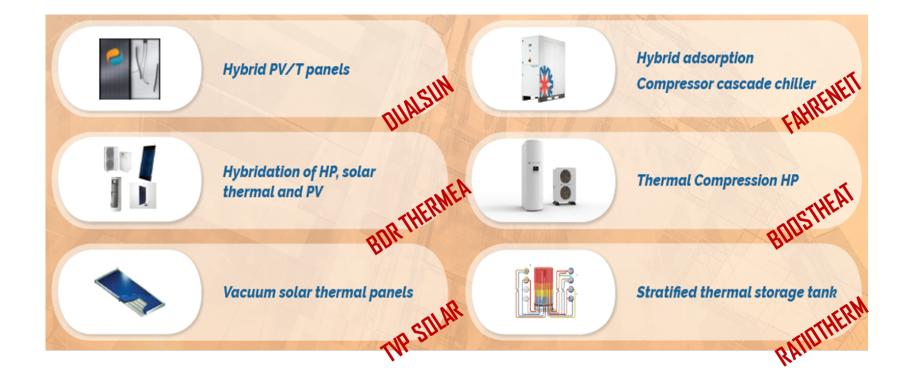
Installation completed

The technology packages have been simulated, with ranges from 30% until 76% energy saving, and up to 84% cost saving. Self consumption ratio until 95%. All the technologies have been shipped to the demo sites between June and September 2021.

3 demosites have completed the installation.

All demosites will have completed the installation. One year extension is on the planning.

TECHNOLOGIES AND DEMOSITES



SunHorizon Technologies

SunHorizon technologies

The demosite needs, are supplied with 5 different technology combinations, that combines the following technologies:

Heat pumps

BDR THERMEA GROUP

Solar technologies

BDR THERMEA GROUP

Storage

ratiotherm

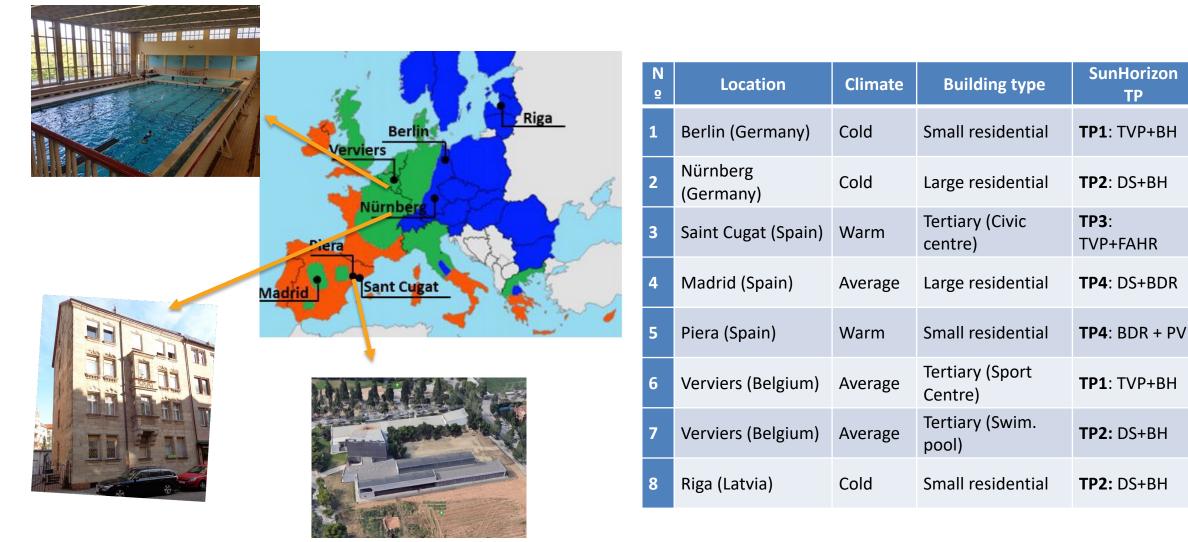
BDR THERMEA GROUP

izon

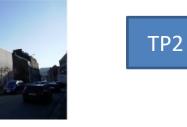
Space cooling

Space heating

Pool heating


DHW

SunHorizon: Demosites



SunHorizon Technology Packages (TP)

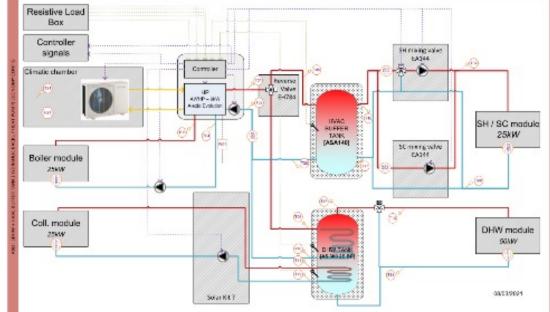
SunHorizon TP		Horizon TP	Solar-HP integration concept	Description	
	TP1	TVP+BH	Parallel integration	TVP for space heating and DHW; BH to cover non-solar periods	
	TP2	DS+BH	Mixed solar-assisted/ parallel	BH for space heating and DHW support; DS PV-T thermal output to assist BH evaporator and cover	
		05.011	integration	preheating of demand; + electricity for appliances	
	ТРЗ	TVP+FAHR	Solar-driven HP for cooling	TVP for space heating + DHW in winter + activation of the thermal compressor of the adsorption chiller	
(FAHR) for space cooling					
	TP4	DS+BDR	Parallel integration	DS PVT thermal output to cover part of space heating + DHW demand + electricity production to cover	
				reversible heat pump electricity consumption	
	TP5	TVP+BH+	Mixed solar-driven/ parallel	TVP for space heating + DHW; BH to cover non solar periods; FAHR adsorption chiller activated only by	
		FAHR	integration	BH or also by TVP	

SIMULATIONS AND TESTING

SunHorizon TP		Solar-HP integration concept	Results from (TRNSYS dynamic) simulations:
TPI	TVP+BH	Parallel integration	In Berlin: 43% of primary energy savings, and 37% of costs savings for the user In Verviers: ~30% of primary energy and costs savings.
TP2	DS+BH	Mixed solar-assisted/ parallel integration	In Nurnberg: ~ 33% of primary energy and costs savings, 80% of el. Self consumption ratio (SCR). In Verviers: ~25% of primary energy and costs savings. 95.1% of SCR In Riga: : ~37% of primary energy and costs savings. 43% of SCR
TP3	TVP+FA HR	Solar-driven HP for cooling	In Sant Cugat ${\sim}35\%$ of primary energy and costs savings**
TP4	BDR + DS	Mixed solar-assisted/ parallel integration	In Madrid ~76% of primary energy and 84% of costs savings, and 37% of SCR In Piera ~59% of primary energy and 53% of costs savings, and 47% of SCR
TP5	TVP+BH + FAHR	Mixed solar-driven/ parallel integration	TP only tested in simulation, in 3 locations and 2 types of buildings (tertiary and apartment building)

Test bench simulation just completed in May '21

heating, cooling and DHW application was performed in March-

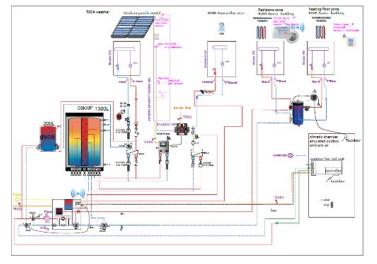

TP4-BDR system test principles and real hardware running in semi-virtua

April, in T3.3, following a custom **8-days test sequence** developed by CEA for Piera demo site in Spain.

The semi-virtual lab test of TP4 from RDR for residential

BDR developed TP4 new concept for maximising the overall system emissions savings and the PV electricity self-consumption through BDR 6kW reversible air source heat pump and 440L water storage, 4m² thermal and 10m² PV flat solar panels (virtually emulated) with homogeneous tilted roof integration.

The analysis of the results is under work, it is already demonstrating nearly **60% annual primary energy savings** and **45% renewable energy ratio** of the real controller and hardware, very close to the estimated values by dynamic TRNSYS simulation.



TP2 system test principles and outlook of real hardware integration during

The test of TP2 involves **Ratiotherm** (solar heat distribution and 1.3 m3 stratified thermal storage, controller with electricity self-consumption strategy) and **Boostheat** (20kW thermal compression gas fired CO2 heat pump) as real hardware components while 50m² Dualsun solar **PVT panels are virtually emulated**, as well as the building and user heat and electricity demand.

The TP2 installation in CEA INES semi-virtual lab is finished. A custom 9-days test sequence was developed by CEA to assess TP2 performance, mainly regarding gas and electricity consumptions in Riga Sunisi demo site in Latvia. The test setup already allows gaining experience for fail proof connections and wiring recommendations of Ratiotherm and Boostheat altogether, and validating the proper operation of controllers.



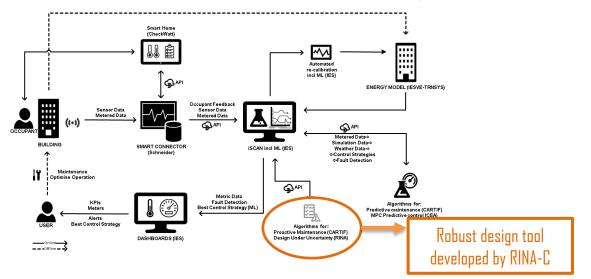
LT power high vacuum flat solar thermal panels testing

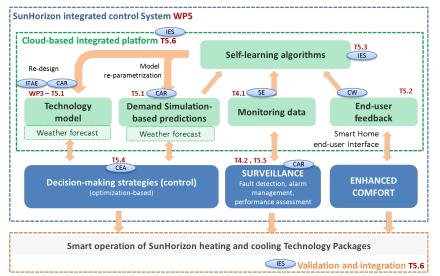
The Sunhorizon demo pilots of **TP3** in Sant Cugat, **TP1** in Verviers and Berlin are relying on **TVP solar LT power high vacuum flat solar thermal panels.**

Before being demonstrated also in INES PFE professional training platform in summer 2021, CEA is about installing 8m² LT power panels on its **sun tracking outdoor solar test bench** to get preliminary experimental performance assessment.

Tests will happen during a **few days in June** with appropriate weather conditions, in Chambéry, France. The resulting LTpower performance test datasets and numerical model are to be used in forthcoming TP1 semi-virtual test or further TVP solar sizing tools and performance simulations.

WHAT'S NEXT





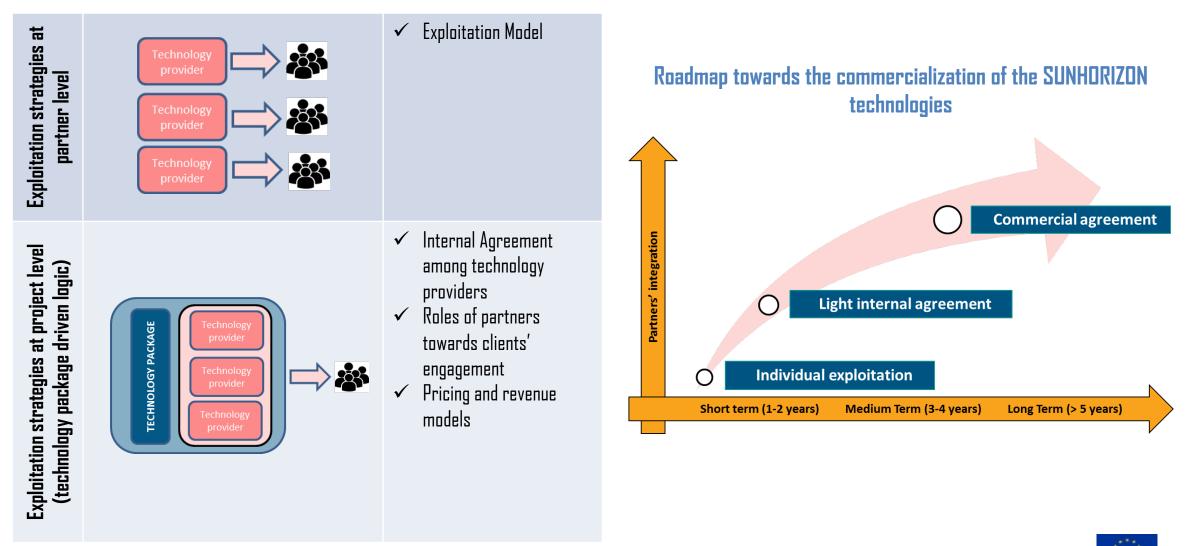
SunHorizon: monitoring and control

- > Optimised sensoring/monitoring platform for:
 - Control purposes
 - Design under uncertainty tool to reduce CAPEX (RINA-C)
 - Predictive maintenance strategy (reduce OPEX)

- > Developing an integrated smart control and surveillance system that combine
 - Monitoring
 - Decision-making strategies
 - Prediction technique
 - Self-learning
 - End-users interaction

Beyond SunHorizon – Key Exploitable Results

#	Results	Main partners	
1	Vacuum Solar Thermal Panels	TVP SOLAR	
2	Hybrid PV/T panels	DS - DUALSUN	
3	Hybrid adsorption/Compressor cascade chiller	FAHR, ITAE	
4	Thermal compression HP	BH - BOOSTHEAT	
5	Hybridation of HP, solar thermal and PV	BDR THERMEA	
6	Stratified thermal storage tank	RATIOTHERM	
Α	Self-Learning and In advance controller	CARTIF, CEA, RINA-C , RATID, SE, CW, IES	
В	Smart End User Interface	SE, CW	
С	SunHorizon Tool Suite and Cloud Database	SE, CEA, CARTIF, IES, RINA-C , EXE, H&C manuf.	



Beyond SunHorizon – Exploitation strategies

Screening of potential BM patterns after the end of the project

BARRIERS AND CHALLENGES

Barrier 01.

Technologies do not always fit the (residential) owners requirements.

Challenge 01.

Lack of an "integrator" partner, both for design and for post-project.

Barrier 02.

COVID-19 consequences on the construction industry, prices and times for execution.

Challenge 02.

Budget for installation defined in proposal phase.

... QUESTIONS?

Federica Fuligni – SunHorizon Project Coordinator Energy Systems & Sustainability Business Development <u>Federica.fuligni@rina.org</u>

